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ABSTRACT: This article describes the application of neural networks and hybrid models
to the finishing stage of nylon-6,6 polycondensation in a twin-screw extruder reactor. A
planned experiment in the industrial and in the pilot plant was employed to build the
neural network and the hybrid model. The hybrid model combines information calcu-
lated from the phenomenological model with the neural network model. The compari-
son of experimental with calculated data shows good agreement. During two years,
industrial data were collected. The comparisons of the models’ prediction with these
data were performed and reasonable results are achieved from the industrial point of
view. These models help an increase of industrial production of about 20%. © 1999 John
Wiley & Sons, Inc. J Appl Polym Sci 72: 905–912, 1999
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INTRODUCTION

Although the phenomenological modeling of the
nylon-6,6 extruder process gives a reasonable
prediction from the industrial point of view
(Giudici et al.1), the nature of the process pre-
sents some difficulties, such as the complex na-
ture of the flow in the extruder, the condensate
removal (mass transfer limitations), and the
kinetics of polycondensation and degradation
reactions. The lack of internal or intermediate
measurements along the industrial extruder re-
actor represents a limitation for a detailed
model validation. In addition, the balance equa-
tion for the concentration of polymer end groups

allows one to calculate only the number-average
molecular weight. Thus, empirical correlations
have to be included in the model to predict
important polymer properties of interest to the
final use, such as relative viscosity.

In light of these difficulties for developing com-
plex phenomenological models, we propose alter-
native models of the nylon-6,6 process, using a
pure neural network model as well as a hybrid
model in which a phenomenological model is com-
bined with neural networks. The neural network
model consists of a set of processing units called
neurons, connected to one another. The neural
network used in this article is a feed-forward net-
work with one hidden layer. By adjusting param-
eters in the coupling between neurons, the net-
work is capable of learning from a set of numeri-
cal data corresponding to the input and the
desired output.
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REVIEW

Nylon-6,6 Polycondensation Process

Nylon-6,6 polymer is produced from hexamethyl-
ene diamine and adipic acid monomers. The de-
sign of the finishing stage reactors of this process
requires special features since they usually oper-
ate with high-viscosity polymers under difficult
conditions of condensate removal and heat trans-
fer. Extruder reactors can be effective in handling
these conditions, as described in reviews on reac-
tive extrusion.2–4

The process under study is carried out in a
self-wiping co-rotating twin-screw extruder. The
extruder is fed with melt polymer. In the first
section of the extruder, there is a vacuum vent
port that promotes degassing conditions for water
evaporation. It is followed by a second section, in
which the main phenomenon is the polyconden-
sation reaction with little or no evaporation tak-
ing place.

Neural Network Models

Neural networks have been attracting great in-
terest as predictive models, as well as for pattern
recognition.5–6

The potential for employing neural networks in
the chemical industry is tremendous because non-
linearity in chemical processes constitutes the
general rule. Neural networks possess the ability
to learn what happens in the process without
actually modeling the physical and chemical laws
that govern the system. The success in obtaining
a reliable and robust network depends strongly
on the choice of process variables involved, as well
as the available set of data and the domain used
for training purposes.

The neural network employed is the feed-for-
ward network (Fig. 1). In this network, informa-
tion propagates in only one direction and is useful
for steady-state modeling.

In general, the networks consist of processing
neurons (represented by circles) and information
flow channels between the neurons, usually de-
nominated interconnects. The boxes represent
neurons where the inputs to the network are
stored. Each processing neuron calculates the
weighted sum of all interconnected signals from
the previous layer plus a bias term, eq. (1), and
then generates an output through its activation
function, eq. (2). The most widely used networks
are made up of three layers, the input, hidden,

and output layers. According to the literature,7

this network is a universal approximator.
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The system learns by making changes in the
weights (wi, j). The input and output variables
chosen for the network training are normalized.
At present, the most extensively adopted algo-
rithm for the learning phase is the back propaga-
tion algorithm, which is a generalization of the
steepest descent method. It consists of minimiz-
ing the mean square error (E), defined as
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where yk comes from the r input–output pairs of
data ( x, y) available for training the network, and
Ok is obtained from the output layer signal, cal-
culated by the following expression:

Oj 5 f~Sj! (4)

In the traditional gradient approach for mini-
mizing the mean square error E with respect to
the weights wi, j, one calculates the derivatives
dE/dwi, j and then moves in the direction of steep-
est descendent. This technique requires using all
the input–output pairs to determine the gradient.

Figure 1 Multilayer feed-forward neural network.
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The back propagation algorithm also uses gradi-
ent information to change the weights; however,
it is calculated with respect to only one input–
output pair at a time.5

Neural networks are characterized by the large
number of parameters involved (weights) due to
the high connectivity among the neurons. Nor-
mally, the data are split into two sets. One set is
used to train the network, and the other is used to
test the prediction capability. In training a net-
work, the objective is to find an optimum set of
weights. When the number of weights is higher
than the number of available data, the error in
fitting the nontrained data initially decreases but
then increases as the network becomes over-
trained. In contrast, when the number of weights
is smaller than the number of data, the overfit-
ting problem is not crucial.

Neural network computing is one of the fastest
growing fields of artificial intelligence due to its
ability to learn nonlinear relationships. Neural
networks represent a promising alternate ap-
proach for modeling polymeric systems. Chan and
Nascimento8 have used neural networks to model
industrial high-pressure olefin polymerization
and comparison between the neural network and
mechanistic models were made.

NEURAL NETWORK FOR THE EXTRUDER
REACTOR

The finishing stage of nylon-6,6 is carried out in a
twin-screw extruder. Modeling this process by a
neural network model was carried out by Nasci-
mento et al.9 This technique requires reliable
data to train the network. The following process
industrial data were used to train the network.

● As the extruder input variables:

(1) temperature;
(2) pressure of the vacuum system;
(3) flow rate;
(4) pressure in the extruder head;
(5) pressure after the pump on the extruder

head;
(6) screw rotation speed.

● As the output variables:

(1) the relative viscosity (RV);
(2) the amine end-groups (CA);
(3) the carboxyl end groups (CC).

Figure 2 shows schematically the input and out-
put information fed to the neural network.

Neural Network Training

A set of 21 planned experiments obtained in the
industrial unit was used to train the neural net-
work (15 runs) and another set to check the
trained neural network (6 runs). The neural net-
work has several parameters that can be chosen,
as follows: the number of iterations and the num-
ber of neurons in the hidden layer. In order to
select the optimum number of neurons to be used,
a sensitivity analysis of the mean square error as
a function of the number of neurons was carried
out for 20,000 presentations, as an example. The
results are shown in Figure 3 concerning the
learning set and the test set. The number of neu-
rons that provides the smallest mean square er-
ror for the training set is NH 5 6. In contrast, the
number of neurons that provides the smallest
mean square error for the test set is NH 5 10.
Figure 4 shows the experimental versus predicted
relative viscosity for the learning and the test set.
The achieved agreement is within the experimen-
tal error.

Usually, the error in the learning set is much
smaller than in the test set. However, the test set
gives an evaluation of the interpolation–extrapo-
lation potential of the neural network.10

This neural network model, as presented, is a
black box of all process. Although the neural net-
work absorbs most of the nonlinearity of the pro-
cess, it is highly dependent on the quality and the
range of the data fed into the network. A promis-
ing alternative is to apply neural networks to the
parts of the problem where it is not possible to use
phenomenological models. In such cases, a com-
bined model is employed, the hybrid model.

Figure 2 Neural network model (input and output
variables).
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HYBRID MODEL

The steady-state phenomenological model (Giu-
dici et al.1) using the plug flow assumption proved
to be robust for predicting the CA and CC values
for the nylon 6,6 processes compared with the
experimental data. However, the prediction of RV
by an empirical polynomial equation as a function

of Mn gave values lower than the expected indus-
trial data (mainly at low values of RV). This may
be explained by the fact that the number-average
molecular weight Mn for linear polycondensation
is calculated from values of CA and CC by eq. (5),
as follows:

Mn 5 2 z 106/~CA 1 CC! (5)

This equation does not reflect the true Mn if some
degradation of the polymer occurs.

One possible reason for the large spread of the
empirical polynomial equation is that degrada-
tion is not taken into account. The inclusion of the
end groups produced by the degradation reactions
could improve the results. However, as already

Figure 5 RV neural network model.

Figure 6 Comparison of RV correlation by neural
network with experimental data.

Figure 3 Residual sensitivity analysis after 20,000
iterations (test-set).

Figure 4 RV calculated by neural network (NH
5 10) and phenomenological models versus experimen-
tal data.
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pointed out, this is not feasible due to the lack of
these measurements.

If no degradation occured, the consumption of
amine would be equal to the consumption of car-
boxyl end groups. One way to quantify the degra-
dation is to compare the CA variation with the
CC variation along the extruder. Giudici et al.1

presented the ratio of differences of the input and
output values of CA and CC. If no degradation
occurs, the ratio should be 1. However, degrada-
tion always happens as a result of thermal shear,
and other effects. Values smaller than one are an
indication that degradation has occurred in some
point in the process. Therefore, a feasible alter-
native to account for the degradation is

RV 5 f~CA, CC, CA0, CC0! (6)

where CA0 and CC0 are the concentrations of
amine and carboxyl end groups in the feed stream
of the extruder, and CA and CC are at the ex-
truder outflow. The neural network model pre-
sented in Figure 5 was developed to correlate RV
according to eq. (6).

Two sets of experiments were used to feed the
neural network. One consists of the 21 planned
experiments made in the industrial plant, dis-

cussed in Giudici et al.1 An additional 44 planned
experiments were run in a pilot screw extruder
reactor. The main reason for using the data from
the pilot plant was that the values of CA and CC
can be changed at the extruder entrance. In the
industrial plant, it is not possible to change the
values of CA and CC in the extruder inflow be-
cause this would provoke a change in the process
beyond the extruder. The only permissible varia-
tion of CA and CC of the extruder inflow was that
which resulted from process variability, repre-
senting in a narrow range. All the data were
previously treated statistically to identify possi-
ble gross error. Four data were considered to pos-
sibly contain gross error and were excluded. The
remaining data (21 from the industrial plant and
40 from the pilot plant) were randomly split into
two groups for the learning set (80%) and test set
(20%) of the neural network. These data are pre-
sented in Figure 6. The neural network model
adjusted the data very well over the entire range
of relative viscosity tested. The agreement of the
test set was compatible with the experimental RV
error analysis.

The structure of the hybrid model, in which the
phenomenological model and the neural network
model are coupled, is presented in Figure 7.

A hybrid model was developed in such a way
that the information about CA and CC are com-
puted by the phenomenological model, and CA
and CC are used to calculate RV by the neural
network model. The neural network model for RV
is fed with the following input information: the
value of CA and CC in the feed stream and CA
and CC predicted at the outflow of the extruder.
The output information is the RV value.

At this point, it is interesting to compare the
empirical relation1 and the proposal neural net-
work model for RV prediction. The neural net-
work uses more information (CA, CC, CA0, CC0)
than the empirical relation (CA, CC). Although
the accuracy of the empirical relation might be
improved by adding CA0 and CC0 information,
one would have is to identify a priori the relation-
ship between these variables. The advantage of

Table I Mechanistic Model (MM) 3 Hybrid Model (HM) 3 Plant Data (PD)

Run Extruder RV : MM RV : HM RV : PD

Run 1B Extruder 3 0.450 0.483 0.517
Run 2B Extruder 3 0.833 0.817 0.817
Run 3B Extruder 8 0.433 0.483 0.517

Figure 7 Overview of the hybrid model.
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the neural network approach is that this relation-
ship is automatically given by the neural network
structure.

Comparison Between Industrial Plant Data and the
Hybrid Model

An increase of production was planned after the
annual plant shutdown. One month after the
start up, new plant data was collected in extruder
3 (runs 1B and 2B) for two different polymer
grades, without a production increase. The devel-
oped models were checked, and the predicted RV
values are shown in Table I. The mechanistic
model (MM 5 phenomenological model with RV
predicted by polynomial correlation1) has pre-
dicted the plant data very well for high RV, but

failed for process situations where the resulting
polymer had a lower RV. This may be explained
by the fact that although the mechanistic model
predicts CA and CC well, the empirical relation of
RV 5 f(CA, CC) is the weak point. Tests were
then carried out in other similar industrial ex-
truders (run 3B), and the models were applied in
the same way. The hybrid model shows good
agreement for polymer of low and high RV.

The comparison of MM and HM compared with
the plant data showed the possibility of increas-
ing the production by changing process variables.
A production increase of 15% of extruder 3 was
carried out and the model prediction (MM and
HM) was checked with the plant data (runs 4B
and 5B) for polymer of different grades (Table II).
The hybrid model appeared to be more robust for
extrapolation purposes than the MM model.

Figure 8 Confidence intervals (95%) of the relative
viscosity (high relative viscosity).

Figure 9 Confidence intervals (95%) of the relative
viscosity (low relative viscosity).

Table II Mechanistic Model (MM) 3 Hybrid Model (HM) 3 Plant Data (PD)

Run Extruder RV : MM RV : HM RV : PD

Run 1B Extruder 3 0.450 0.483 0.517
Run 2B Extruder 3 0.833 0.817 0.817
Run 4B Extruder 3 0.450 0.483 0.500
Run 5B Extruder 3 0.800 0.767 0.783
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To show the consistency between experiment
and the calculated data, an analysis of opera-
tion data must be done. Data covering a period
of about 1 year were analyzed. During this pe-
riod, different polymer grades were produced.
The data were treated and separated into
groups according the relative viscosity (RV)
level. Figures 8 and 9 show the variation of the
relative viscosity caused by process variability.
The range of acceptable data was within the
confidence interval of 95%. Comparing the ac-
ceptable range of the process variability with
the model predictions, we may conclude that the
predictions of both models are acceptable at
high relative viscosity. At low relative viscosity,
the predictions of the hybrid model are accept-
able, but those of the MM model not.

We have not rejected the data outside the
region of the limits shown in Figures 8 and 9 as
an outliers since we do not have enough infor-
mation to eliminate the possibility of abnormal
problems that might occur in the process during
these periods. However, the elimination of the
possible outliers would not substantially alter
the analysis.

The comparison of the hybrid model predic-
tions with the industrial data collected during the

year of 1995 is shown in Figures 10 and 11. The
model predictions showed good agreement with
the industrial data collected during 1995 in dif-
ferent extruders.

CONCLUSIONS

In this article, we have successfully modeled the
nylon-6,6 polycondensation process in a twin-
screw extruder reactor via a neural network and
by a hybrid model in which phenomenological
with neural network models are combined. These
models were shown to be an important tool for
increasing the plant production. Some plant bot-
tlenecks were achieved after an increase of 20% of
plant production.

Planned industrial and pilot plant experi-
ments were used to correlate the neural net-
work model. Although neural networks are rel-
atively easy to use, prior process variables
should be known, and the quality of information
and the domains of the data are crucial to ob-
tain reasonable results. Neural networks are
especially useful for predict RV as a function of

Figure 10 Experimental versus calculated data (year
of 1995; extruder 3).

Figure 11 Experimental versus calculated data (year
of 1995; extruder 7).
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the end group concentrations via a relation,
which is not known a priori.
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script. Also, partial support from FAPESP and CNPq is
gratefully appreciated.

NOTATION

CA concentration of amine end groups
CC concentration of carboxyl end groups
CA0 concentration of amine end groups in the

feed stream
CC0 concentration of carboxyl end groups in

the feed stream
E quadratic deviation
f Sigma function, in eq. (2)
Mn number-average molecular weight
n number of input variables in the neural

network model
NH number of neurons in the hidden layer
Oj output from neuron j
Ok output from neuron k in the output layer
p number of output variables in the neural

network model
P pressure imposed by vacuum system
P1 pressure in the extruder head
P2 pressure after the pump in the extruder

head
Q flow rate
r number of input–output pairs in the

learning set
RPM screw rotation speed

RV relative viscosity
Sj weighted sum of inputs to a neuron
T temperature
wi, j weight of variable i, in neuron j
Xi normalized input variable i in the neural

network model
yk normalized output variable k in the neural

network model

Superscripts

m point in learning set
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